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An elliptic-vortex model for approximating the time-dependent Navier-Stokes equations at 
high Reynolds number is presented. One attractive feature of the new method is that the 
elliptic-computational elements used in this model are very good for boundary layer flow. 
Also introduced are a modified boundary algorithm and a new outflow boundary condition. 
Numerical computations for fiat-plate problems show that the new method converges very fast 
and the numerical results are in excellent agreement with known facts. 

1. INTRODUCTION 

The random-vortex method published by Chorin in [4] is a grid-free method. This 
method is suitable for analysis of flow at high Reynolds number because it has no 
obvious intrinsic source of diffusion. The features of this method are as follows: the 
inviscid parts of the equation are taken into account by analysis of the interactions 
between vortices of small but finite core (“vortex blob”); viscous diffusion is taken 
into account by adding to the motion of vortices a Gaussian random component of 
appropriate variance, and the no-slip boundary conditions are approximated by a 
vorticity-creation procedure. 

There are some difficulties with this method, however. Mainly, its convergence is 
slow near the boundary (see Chorin et al. [7]) and the results are not always 
independent of numerical parameters (see Ashurst [ 11). To overcome this problem, 
Choring published in [5] the vortex-sheet method. Vortex-sheet elements could be 
used near the boundary, at the cost of replacing the Navier-Stokes equations by the 
Prandtl boundary-layer equations. So the important boundary-layer instability cannot 
be seen in the sheet method. For solving this problem, Chorin [6] used a hybrid 
method resulting from a coupling of the vortex-sheet method at the inner flow and the 
vortex-blob method at the outer flow to calculate physical instability. Also Cheer did 
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FIG. 1. Average velocity between t = 4 and t = 6 for R = 2 x 10’ (A) and Blasius profile (-). 
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FIG. 2. Average velocity between t = 4 and t = 6 for R = 5 X lo3 (A) and Blasius profile (-). 
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FIG. 3. Average velocity between t = 4 and t = 6 for R = lo4 (A) and Blasius profile (-). 



56 ZHEN-HUANTENG 

this for flow past a circular cylinder in [3]. Obviously, transition from sheets to blobs 
involves a decision process which is not unambiguous. 

In this paper we shall present an elliptic-vortex model which can overcome all the 
difficulties above. The main merits of the new model are as follows: 

(i) This method converges fast near the boundary because the elliptic structure 
of the vortex is suitble for boundary flow. 

(ii) The elliptic-vortex method solves the Navier-Stokes equations and, thus, it 
is useful both for the inner flow and for the outer flow. 

(iii) The cutoff length, i.e., the lengths of the major and the minor axis of the 
elliptic-computational elements, can be determined in a natural way, and as a result 
the numerical results obtained are independent of numerical parameters. 

We shall also introduce a modified boundary algorithm. In this algorithm, a vortex 
that hits the boundary bounces from the boundary for the inviscid part of the flow, 
and diffuses through the boundary for the viscous part of the flow. We also give a 
new outflow-boundary condition which makes the calculation stable and accurate. 

Numerical calculations are carried out for the semi-infinite flat-plate problem. In 
the test calculations we use a rather large step and space step. The results agree quite 
well with known facts. For example, the average horizontal velocities over 10 time 
steps between t = 4 and t = 6 at fi = 2 x 103, R = 5 x 103, and R = lo4 are in 
excellent agreement with the laminar steady Blasius profile (see Fig. 1, Fig. 2, and 
Fig. 3), and at R = 10’ the average velocity over the same period of time exhibits a 
physical instability (see Fig. 5). 
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FIG. 4. Average velocity between t = 4 +d t = 6 for R = 5 x lo4 (A) and Blasius profile (-). 
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FIG. 5. Average velocity between t = 4 and t = 6 for R = 10’ (A) and Blasius profile (-). 

2. ELLIPTIC-VORTEX BLOB MODEL IN Two DIMENSIONS 

The Navier-Stokes equations for an incompressible flow can be written as 

a,r+ (u * v)eR-‘A& 
4 = -4, (1) 

u=a,w, v = -a.& 

where u = (u, v) is the velocity vector, r = (x, y) is the position vector, 1 is the time, v 
is the stream function, r = 8,~ - a,u is the vorticity, A = V2 is the Laplace operator 
and R is the Reynolds number. 

First, we consider the inviscid, incompressible flow without boundaries. In this 
case, the Navier-Stokes equations above reduce to 

u+ua,r+va,~=o, 
4=-t, 

u=a,V, v = -a,ly. 
For solving Eqs. (2), suppose the vorticity field r is now represented by the sum of 

vortices ci with finite cores 

ax9 Yv 6 = c w, Y, 0. (3) 
i=l 
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We shall suppose the vortices ci are elliptic-vortex blobs, i.e., the vortices have finite- 
elliptic cores. The elliptic vortices & are defined by 

TiCx3 Y, t> = riY(x - xi(t>, Y - Yi(t)>9 (4) 

where r, are their respective circulations, (xi(t), yi(t)) are the present locations of the 
vortices, and y is a uniform vorticity distribution over an ellipse 0(a, b). The y is 
given by 

Y(X, Y> = l/a (4 Y) E m4 b), 
= 0 (x, Y> E m, b), 

(5) 

where Q(a, b) is an ellipse with major axis a and minor axis b, defined by 

W? b) = 1(x, Y) I (x2/a’) + (Y2/b2) < 11, (6) 

and 
u = nub (7) 

is the area of 0(u, b). Note that here the distribution y or the elliptic shape D(u, b) is 
common to all vortex blobs &. 

With assumptions (3) and (4), the stream function w will have the form 

with 

v 2$(x, y) = -l/a (x, Y) E Q(a, b), 

=o (w) iZ a@, b). 
(9) 

When a = b, the elliptic vortex blob ci reduces to the circular-vortex blob (for this 
kind of model, see Chorin [4], Hald [9], and Leonard [ 121). In the general case, a 
solution of the Eq. (9) can be expressed by a potential integral over the ellipse B(u, b) 

4(x, v) = & 11 ln 
1 

& dv. 
R(a,b) d@ - 0’ + (Y -VI’ 

In fact (10) can be integrated out in closed form, but the process of calculation is 
rather cumbersome. Here we shall only give the results 

-1 
9(x’ ‘) = 27r(u + b) 

- 1 =- 
272 

(x2/a> + (Y’lP) + ln a +P 
a+P u+b 

(x, y) E a(u, b), 

(xv Y) ii Q(u, b), 

(11) 
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where 

(r=j/m, p=@X 

and J (>0) satisfies 

59 

(12) 

x*/(u* + n> + y2/(P + A) = 1. (13) 

It is easy to verify that function (11) is continuously differentiable in the whole space 
and satisfies the Eq. (9). With formula (11) in hand, we can find the induced velocity 
field by taking the derivative of the stream function (8). Thus 

u(x, Y9 f, = $J ri ay@(x -x,(c)9 Y - Yi(l)), 
i=i 

By some calculations on (11) one gets 

a,qqx, y) = - l tf n(a + b) b 
-1 Y 

= 7r(a+8)j 

and 

8,4(x, y)= - l x K(U + b) a 
-1 x 

=n(cf+p)a 

(14) 

(x9 Y) E w, b), 

(15) 

(x9 Y) E Q@, 61, 

(x, Y) (5 wa, b), 

(16) 

(x9 Y) ii w, b), 

where CX, p are defined by (12) and (13). 
According to the inviscid vorticity-transport equation (2a), the motion of the 

vortex blobs is described by the induced velocity field at its present position 

where the induced velocity U, v are given by (14). For simplicity Eqs. (17) are 
approximated by Euler’s method 

2;’ l = x; + qx;, y;, nk)k, jy+ l= y; + u(x;, yy, nk)k, (18) 

where k is a time step, x; = xr(nk) and y; = y,(nk) are the coordinates of the vortex 
r i’ 
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Next we shall consider the diffusion part of the Navier-Stokes equations, 

a,(= R-’ V=c. (19) 

The heat equation is well known to be solvable by a random-walk algorithm (see 
Chorin [4]). As a result, Eq. (19) can be solved by moving the blobs according to the 
law 

(20) 

where ql, r2 are independent Gaussian-random variables with mean zero and 
variance 2k/R. 

In summary, the procedure for approximating Eqs. (1) is as follows: the vortex 
blobs are moved by the laws (18), (20), and then the new velocity field (14) is deter- 
mined by the vortex blobs at their new positions. 

Note that in the vortex method we use clouds of nondeformable, nonrotational 
numerical-vortex elements to approximate the motion of deformable physical vortices. 
The collective motion resolves all effects, including the rotation and deformation 
effects. The convergence theories of the vortex-blob method to the solution of the 
Euler equations (see Hald [9] and Beale and Majda [2]) and partial convergence 
results for Navier-Stokes equations (see Chorin et al. [ 71) lend support to this expec- 
tation. 

3. SYMMETRY EXTENSION AND VORTEX GENERATION 

We shall consider incompressible flow with boundaries. In the following we shall 
only dicuss flow past a semi-infinite flat plate. 

Suppose a semi-infinite flat plate is placed on the positive half-axis in an incom- 
pressible fluid of density 1 occupying the half space y > 0. At time t < 0 the fluid is 
at rest. At t = 0, the fluid is impulsively set into motion with velocity U,. The flow is 
described by the Navier-Stokes equation (1) with the boundary conditions 

u=(U,,O) at y=co, t>O @la) 
u=v=o at y = 0, x>o (2lb) 

av -0 &- at y = 0, x < 0. 

Initially u = (U, , 0), everywhere. 
The vortex-blob method described in the previous section approximates the 

Navier-Stokes equations (1) without boundary (21). Suppose at some moment t = nk 
there are N vortex blobs &(x, y, t) at the upper space (y > 0). Generally, the flow 
induced by the vortices does not satisfy the boundary conditions (21). To satisfy the 
zero normal-velocity condition v = 0, the image method will do the job. The image 
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method is as following: for each elliptic-vortex blob {,(x, y, t) = T, y(x - xi, y - yr) 
with y, > 0, we set its image-vortex blob 

ax9 Y, 4 = -r,Y(X - Xl9 Y + Vi) (22) 

at the symmetric point (xr , -yi) of the lower space. 
Using a procedure similar to the one in Section 2, we know that the vortices ri 

:~~l,,; E), together with their image vortices ci (i = l,...,N), define the stream 

&-J .Y, t) = i T*(ti(X - X*9 Y - Yi) - $Cx - Xir Y + Yi>) (23) 
i=l 

and, thus, the induced velocity as 

24(X, y, t) = ,$ rf(ay((X -X(9 Y - Yi) -ay$(x -xi9 Y + Ui)>9 
/=l 

U(X, Yyt)=-~ ri(ax#(Xmxi, Y-yi)--a,$(x-xi, Y+ Y{))* 
(24) 

I=1 

From this we can see that the induced velocity field is symmetric with respect to the 
boundary y = 0: 

qx, Yv Q = 4% -Y, t> 

u(x, y, t> = -v(x, -y, t) 
(25) 

and its normal velocity u at the wall (y = 0) equals zero 

u(x, 0, t) = 0. (26) 

This tells us that the image method continues the flow from the upper space to the 
lower space by a symmetric extension (25). As a result 

r(x, y) = _ wx, Y) + w9 Y) = wx, 9) _ w, -y) = -qx, -y). 
8Y 8X aY aX 

Note that since we are not assuming that < is continuous in the flow consisting of 
the real flow and its image, the condition above does not imply c(x, 0) = 
lim,,,, t(x, Y) = 0. 

Here we point out that for Prandtl equations there may have been another way of 
extending the flow to take care of the normal boundary condition. For example, in 
[5] Chorin used an antisymmetry u(x, -y) = -u(x, y) to extend the velocity field 
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across the wall for the sheets method. Since <=-au/@ in the Prandtl-boundary 
equations, the antisymmetry leads to 

r(x 
3 

y) = _ WG Y> = wx, -Y) 
aY aY 

= @x, -Y). 

For the Navier-Stokes equations u(x, y) = -u(x, -y) cannot lead to ((x, y) = 
T(x, -y) and, thus, antisymmetry extension cannot be used here. As shown above the 
symmetry leads to ((x, y) = -<(x, -y). 

The remaining no-slip boundary condition u = 0 at y = 0 can be satisfied through 
the following vorticity-creation algorithm. Suppose the velocity component u(x, 0, t), 
calculated by (24), is not equal to zero. The effect of viscosity will create a thin 
boundary layer just above the wall which will ensure a smooth transition from the 
boundary to the inside flow. As described by Chorin in [4], an array of vortices will 
approximate these features, and its induced velocity field will annihilate the tangential 
velocity u(x, 0, t) at the boundary. 

We now put this idea into practice for the elliptic-vortex model. First divide the 
boundary {(x, 0) IO < x <X} into M segments of equal length h with centers Qi, 
i= 1 ,..., M, let the coordinates of Q, be (Xi, 0) and the tangential velocity be #(Xi, 0). 
At each point Qi create 21, vortices rj (j = l,..., 21,), with structure (4) and of equal 
intensive ri, where Ii is an integer to be determined in the next section. In the 
following we shall discuss how to satisfy the tangent velocity by the new vortices and 
to determine the vortex parameters a, b, and ri. The major axis a can be easily deter- 
mined. Since we want to piece together the vortex elements created at different 
boundary points Qi into a single vortex layer, so the length of the major axis ought to 
equal the distance between the neighboring points, i.e., 

a = h/2. (27) 

Another requirement is that the velocity field induced by the vortices rj 
G = l,..., 21,) at Qi, must have an opposite sign velocity of U(X,, 0) at their lower 
vertex (Xi, -b) and, thus, after random walk the newly created vortices located at the 
upper space with their image vortices can cancel the boundary velocity u(X(, 0). 
From this and (14), (15) we can determine the intensity T, of the vortices as 

r, = -@(a + b)/21,) u(XI, 0). 

Next, we shall let the vortices move by law (20). On the average, half of the 
vortices created at the boundary will walk into the upper space. At the same time the 
other half of the vortices will flow to the lower space, and cancel, at the boundary, 
with their image vortices. We know that after a random walk, if half of the new 
vortices <, walk into the upper space with their lower vertices just on the boundary 
point Q,, the induced velocity by the new vortices with their image vortices will 
exactly annihilate the u(X,, 0). Because of the random character, we cannot do it 
exactly. But we can make the mean coordinates of their lower vertices fall on the 
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boundary point Q,, if we choose b equal to the mean distance of the random walk to 
the positive y axis, i.e., 

According to the analysis above we can see that b = 2 m is the best choice for 
satisfying the boundary condition u = 0. So now all the parameters ri, a, b have been 
determined. Here we have to point out that the major axis b, by (29), depends on 
both the time step k and the Reynolds number R. From (29) we know that the width 
of an elliptic-vortex blob, i.e., the minor axis 2b, is ofthe same order of the boundary, 
layer thickness 0(1/G). S o we think this kind of elliptic-vortex blob is suited for 
mimicking the boundary flow. 

To reduce the statistical error wa can require that the new blobs move by law (20) 
only along the y-axis direction and exactly half of them disappear at each step. The 
former requirement can be accomplished by choosing q1 = 0 in (20). For the latter, a 
rejection technique [6] is used which ensures that successive qr’s used in (20) have 
opposite signs, and upon application of formula (20), exactly one half will flow to the 
upper space. 

Using the algorithm described above we see that the normal boundary condition is 
satisfied exactly, but the tangential condition is satisfied statistically. 

4. VORTEX BOUNCING,DIFFUSION AT THE WALL 
AND OUTFLOW-BOUNDARY CONDITION 

Here we shall present a special treatment of the boundaries. According to formula 
(26), we know that the vortex rj cannot pass through the boundary (y = 0) due to the 
inviscid motion (17). But when we use the discrete formula (18), this may happen 
(i.e., fl+’ ( 0). In our calculation, if the vortices cross the bundary we reflect them 
back into the fluid. 

As for the viscous motion (20), the vortex & may cross the wall. By the symmetry 
of the fluid at y = 0, while a vortex & walks into the lower space its image vortex fi 
will walk into the upper space, This suggests to us the following algortihm: If yl+’ = 
y~+‘+~l<O,weset&=--Ti~(x-x~+‘,y+y~+’)at (x9+‘,-yl+‘). 

Finally, we discuss the outflow conditions. Because we have to restrict the size of 
the region, e.g., 0 <x < 1, in which we do our computation, we need to impose a 
boundary condition at the outflow boundary x = 1. It is known that a bad outflow 
condition may cause oscillations of the velocity profile in the region of interest. 
Hedstrom and Ortenheld in [lo] give a detailed discussion about this. They use a 
discrete form of the condition uu, = (l/R)u, and uy = -0, at the outflow boundary. 
But there is no obvious way to put this kind of condition to work for the vortex 
method. Chorin in [6] gives an outflow condition which behaves as an absorbing 
boundary. He allows vortices to follow for x > 1, where detailed calculations are 

581/46/l-5 
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performed at 0 Q x Q 1, but to move only according to the random component in 
their law of motion. When they reach x = 2 they are deleted. 

We shall give a modified algorithm. That is, when the vortex-blobs flow in the 
region 1 Q x < 2 we shall allow them to move not only with the random component 
but also with their own constant velocities in the motion (18), where the constant 
velocities are what they had when they just left the boundary x = 1. Our modified 
outflow condition looks like finite-plate outflow condition because there is no vortex 
generation at the piece of the wall 1 <x < 2. Using the modified algorithm there, no 
oscillation occurs on the average velocity profile at x = 4 (see Fig. l-5). 

5. CALCULATION SCHEME 

We shall give the detail of the algorithm and the formulas. First, discretize the 
boundary by dividing the boundary (y = 0, 0 < x < 1) into M segments of equal 
length h with centers Q, = (I,, 0) (i = l,..., M). From the discussion in Section 3 we 
know that the ellipse D(u, b) is completely determined by 

h 
a=-, 

2 

where k is a time step. 
Suppose at some moment t” = nk. There are N(P) elliptic vortices <l 

(i = l,..., N(P)) at the upper space. By the formula (4), 4: can be determined by its 
position (x7, yy) and intensity r: . So a computational element r,” can be expressed 
by rl= (I’;, x1, ys). The vortices ry with their image vortices & = (-r;, xl, -yy) 
induce a velocity field at y ) 0 

uyx, y) = 1 + c q<a,+ -xi”, Y - Y/“) - a,fqx -xi”, Y + Yj”)), 
J=l 

NW) 
(30) 

uyx, y) = - r rp,#(x - xi”, y - Yj”, - a,#@ -xi”, Y + Y.3). 
j=1 

By substituting (15), (16) into (30) we obtain 
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q w satisfies ((x - x~“)~/(u~ + A;)) + ((y - y,“)‘/(b’ + A;)) = 1, 

1; (>O) satisfies ((x -~;)‘/(a + 1;)) + ((y + y;)2/(b2 + 1;)) = 1, 

c is taken over all vortices r/” such that (x - xj”, y - yj”) E 0(a, b), 

i is taken over all vortices c$’ such that (x - xi”, y + yj”) E LJ(a, b), 

i is taken over all vortices <j’ such that (x - x/” , y - yj”) c a(~, b), 

i is taken over all vortices <y such that (x - xi”, y + yy) 5 a(a, b). 
4 

For each time step k, the algorithm consists of two steps: First, at each boundary 
point Q,, 21, vortices <T = (r[, X,, 0) (j = l,..., 2Z,), are generated, where 

I, = 0, for I u”(X,, O)l 4 th,, , 

= uw,9 (-wnaxll9 for IUn(Xi, O)l > ~~max~ (32) 

r, = -+(a t b)/21,) u(X,, 0) 

and umpx is some given small number. In (32), ] . ] means absolute value and [. ] 
means the integer part of a real number. 

The second step is to move the vortex blobs; the new vortices rJ’ = 
(ri,xi, O)(j= l9*.*9 210, move by the law 

x1 n+l =x n+1_ 
iv Yj - tt2, r, 

n-k1 =r 
i, for yy+l> 0, 

= 0, for y;+‘<O, 

where any two successive v2’s have different signs and thus only half of the new 
vortices move to the upper space. The old vortices r; = (ry, x;, y;) with y; > 0 move 
by 

x;+'=x;tf;k+q,, 
yy+1= Il~;+W+tlzl, 

=r;, for IyltB;kl+q2>0 and x;+‘<2, 
p+l =-p 1 1, for Iyf+z7:k(+q2<0 and xy+‘<2, 

= 0, for xl+’ > 2, 
where 

(q, q) = @“(x;t, Y;), u”(x;, y;)) by (31), if x1 < 1 
= (tq-1, q-y, if l<x;<2. 
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After the two steps, iV(t”) is changed by adding a number of newly created vortices 
located at the upper space and deducting the number of vortices which move out of 
the boundary x = 2, the new velocity (31) is determined by the vortices at their new 
positions and one goes back to the first part of the procedure. The procedure is 
started at t = 0 by setting N(0) = 0. 

6. NUMERICAL RESULTS FOR A SEMI-INFINITE FLAT PLATE 

The physical problem of flow past a flat plate is described by the Navier-Stokes 
equations (1) and boundary conditions (21). For large Reynolds number R, the 
Prandtl-boundary layer equation (White [ 151, Chorin and Marsden [8]) should 
provide a reasonable description of the flow near the plate and away from the leading 
edge. The Prandtl equations have a stationary solution, the Blasius solution, which is 
a function of the similarity variable ,U = y/G, where v = l/R is the viscosity if 
lJ, = 1 and L = 1. The Blasius solution is a very good test solution for Eqs. (1) and 
(21). It is known that the Blasius solution is unstable to infinitesimal perturbations 
which satisfy Eq. (1) (see Lin [13]) if R, = 1.72 m> R,,; R,,r 520 (see 
Jordinson [ 11 I). For the perturbations of a finite amplitude the value of R,, given 
above has to be lowered. Since the vortex method will by its nature contain linite- 
amplitude perturbations, a substantial amount of noise and edge effect, the 
appropriate value of R, which separates stable fom unstable regimes is not clear. As 
described by Chorin in [6], there may exist a value RLc such that for R, < RLc all 
perturbations decay. He suggests the best guess of R;i, is about 300, with a 
substantial margin of error. For R, > R A,, presumably the erturbation grows and 
reaches some finite-amplitude equilibrium. 

The numerical results obtained by our elliptic-vortex method agree quite well with 
the analysis given above. In our calculations, the boundary of the linite plate with 
length 1 is divided into M = 5 pieces, each of length h = l/M = 0.2. The outflow 
condition is put on 1 <x < 2. The time step is k = 0.2. The term urnax = 0.2 is 
chosen. The Reynolds numbers R used are 2 X 103, 5 X 103, 104, 5 X 104, and lo5 
because at these ranges of R we can observe both physical stability and instability. 

Figures l-5 display the average velocities over 10 time steps between t = 4.0 and 
t = 6.0 as a function of p = y/fi at x = l/2 for R = 2 x 203, 5 x 103, 104, 5 x 104, 
and 105. To average the solution over a number of time steps (see [ 141) can reduce 
the statistical error in the steady state. On the figures, (-) refers to the laminar 
steady Blasius profile, and (A) represent the numerical solutions of the horizontal 
velocity calulated by (31). From Figs. l-3 we can see the numerical solutions are in 
very close agreement with the Balsius curves for R = 2 x lo3 (R, = 54), R = 5 x lo3 
(R, = 86), and R = lo4 (R, = 122). Figure 4 displays some differences between the 
numerical solution and Blasius profile at large value of fi for R = 5 x lo4 (R, = 272). 
It seems that the value R, = 272 is the approximate value of RL,. In Figure 5 the 
numerical solution has more obvious departure from the Blasius profile at R = 10’ 
(R, = 384). That means for R, = 384 (>RL, = 300) the perturbations of a finite 
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FIG. 6. Elliptic-vortex blobs over a flat plate. 

amplitude can grow up. These results are reasonable in view of what is known from 
the theory and from experiment. 

Comparing this with the hybrid method [6] and the circular-vortex method [ 11, we 
see that we could use a much bigger space step h and time step k and, furthermore, 
have results (Fig. l-5) that look better. Why can the elliptic-vortex method get better 
results? The reason is that elliptic elements can induce an asymmetric-velocity field 
(15), (16). So we are able to adjust a and b (see (27) and (29)) to make the 
derivative of induced velocity along the direction tangent to the surface much smaller 
than the derivative in the normal direction. According to the boundary-layer theory 
this kind of elliptic blob is good for simulating boundary flow and thus fewer blobs 
are required to represent the boundary layer. 

A typical run from t = 0 to t = 6 with the numerical parameters used here takes 
about 10 seconds on CDC 7600 computer at the Lawrence Berkeley Laboratory. At 
the end of the calculation there are about 50 blobs at 0 <x < 1 and 80 blobs at 
1 <x < 2. In Figure 6 we display a typical vorticity configuration, where (-) 
corresponds to the center of a vortex blob with a negative circulation and (+) with a 
positive circularion. This figure was obtained with k = 0.2, h = 0.2, urnax = 0.2, 
R = 104, at t = 6.0. 

7. CONCLUSION 

We have presented a new elliptic-vortex model for the Navier-Stokes equations, 
which greatly improves the convergence and the accuracy of the vortex model for 
boundary-layer flows. Numerical results indicate that the new model, which includes 
the new boundary algorithm and the new outflow condition, is very effective for 
calculating flat plate flows. The behavior of the boundary layer at Reynolds numbers 
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where instability is expected may be seen by this new model. We hope that this 
method will be applied to other kinds of boundary-flow problems. A generalization of 
the elliptic-vortex model to three-dimensional flow problems is being considered. 
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